Productively Unifying Exception and Variation

Christine Yue, Charles Yang, and Kathryn Schuler

University of Pennsylvania

NELS Special Session: Idiosyncrasy & Grammar

17 October 2025

Idiosyncrasy and grammar

- How do language learners acquire <u>productive rules</u>?
 - In variable contexts?
 - o In the face of exceptions?
 - With incomplete input?
- What is the learning mechanism to distinguish <u>categorical rules</u> with exceptions vs. <u>variable rules</u>?

Today: A step in reconciling exception and variation

- The upshot: a learner's productive generalizations inform the learning of categorical and variable rules
 - Demonstrated in the lab setting with an artificial language learning task
- The status of optionality:
 - Conditioning factors affect the probabilistic distributions of variable forms, but don't preclude the grammaticality of alternate forms (e.g. Gries, 2003, Bresnan & Nikitina, 2003)
 - The acquisition trajectory often includes inconsistent generalizations
 - e.g. "Mommy go-ed to the gym." (MacWhinney, 2000; Marcus et al, 1999)
 - e.g. Acquisition of Mexican Spanish variable DOM (Callen & Miller, 2022)

Road map

- Background
- Proposal
- Experiments
 - The Hidden Wug Task
 - Experiment 1
 - Experiment 2
- Discussion

Learning exception and variation

Regularity and exceptions: **categorical productive generalizations** (e.g. Berko, 1958; Pinker, 1999; Albright & Hayes, 2003; Yang, 2016)

- English past tense
 - (1) She played in the park.
 - (2) a. He ate.
 - b. * He eated.

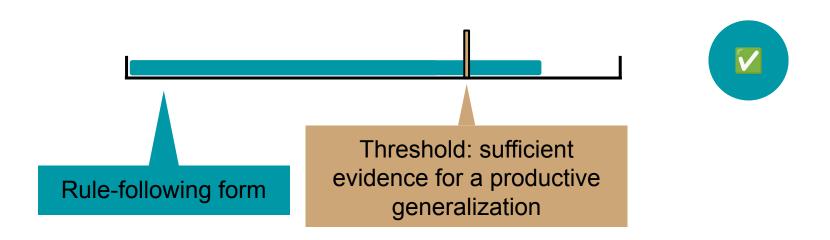
Learning exception and variation

Variation and optionality: **probabilistic mechanisms** (e.g. Kroch, 1989; Yang, 2002; Boersma, 1997; Hayes & Wilson, 2008; Hayes et al, 2009; Bresnan & Nikitina, 2009)

- Particle verbs in English
 (e.g. Wasow 1995; Gries, 2003)
 - (3) a. She looked the book <u>up</u>b. She looked <u>up</u> the book

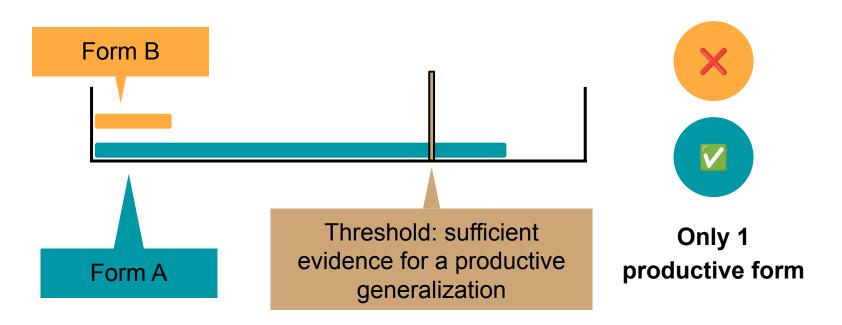
(-t, -d) deletion
 (e.g. Labov 1989; Roberts, 1996; 1997)
 (4) / best fiend /
 [bes fien]
 best friend

Prior approaches

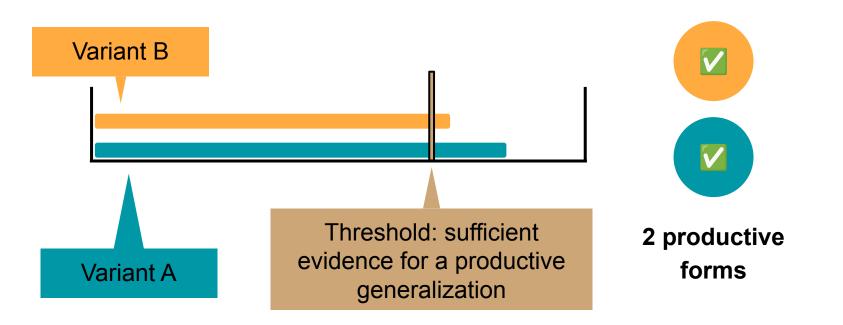

- Regularization as default behavior (for children)
 - O Driven by input frequency (e.g. Shin & Miller, 2022)
 - How is variation learned?
- Variable patterns acquired as default
 - Regularization as exceptional behavior caused by learners' limitations
 (e.g. Hudson Kam & Newport 2005, 2009; Schwab, Lew-Williams, Goldberg, 2018; Austin et al., 2022; Keogh, Kirby, & Culbertson, 2024)
 - Probability-learning mechanisms (e.g. Albright & Hayes, 2003; Ernestus & Baayen,
 2003; Hudson Kam & Newport, 2009; Montag, 2021)
 - Why do (the same) learners sometimes regularize their input? (e.g. Schuler, Yang, & Newport 2016)

Road map

- Background
- Proposal
- Experiments
 - The Hidden Wug Task
 - Experiment 1
 - Experiment 2
- Discussion


The proposal

Productive generalization underlies both regularization and systematic variation


The proposal

Productive generalization underlies both regularization and systematic variation

The proposal

Productive generalization underlies both regularization and systematic variation

The proposal: A concrete, testable mechanism

- Concretizes the mechanism via which learners acquire rules categorical or variable
 - Observed in the literature that though children often start with a single variant everywhere, they sometimes learn the variants simultaneously (e.g. Shin & Miller, 2022)
 - Makes predictions that can be tested experimentally (a step in this direction today)

The proposal: Types vs. tokens

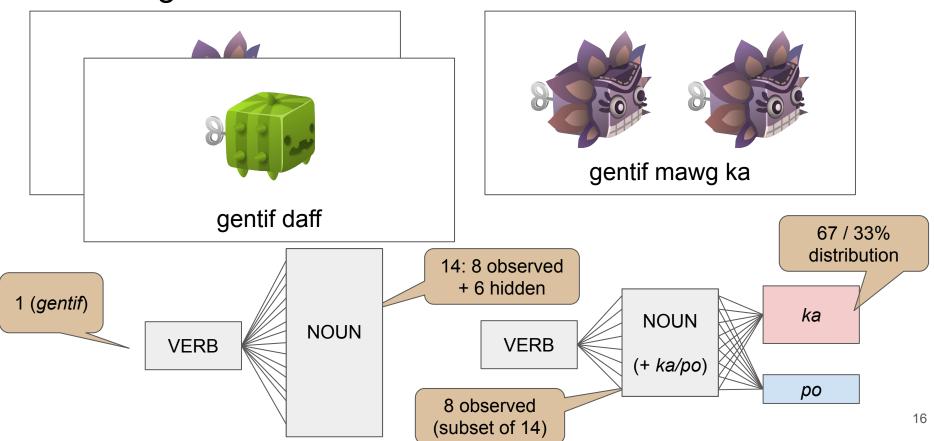
• <u>Type</u> distribution

 Determines the productive generalization of a rule over forms (e.g. Aranoff, 1976; Kiparsky, 1973; Rumelhart & McClelland, 1987; Marchman & Plunkett, 1993; Bybee, 1995; Yang, 2016)

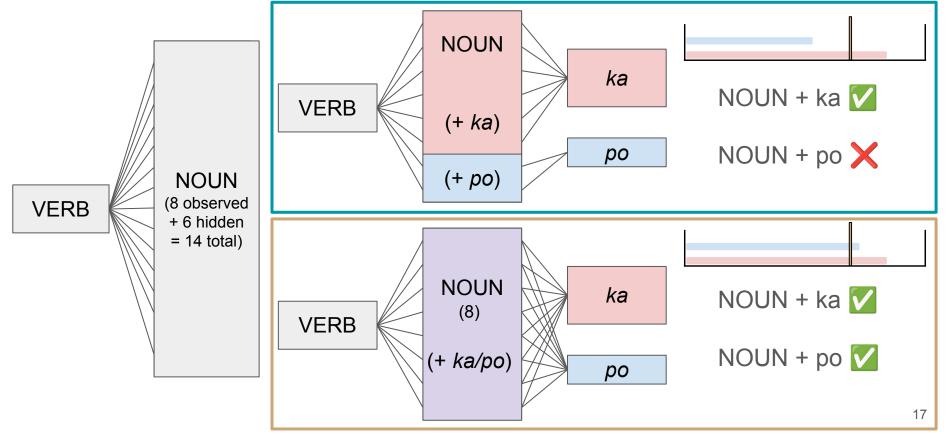
Token distribution

- Affects learning of types (more frequent forms learned first) (Pierrehumbert, 2001; Singleton & Newport, 2004)
- Informs learning of the distribution of the variants (probability learning as a general mechanism), but crucially after the variants are established via generalization

Road map

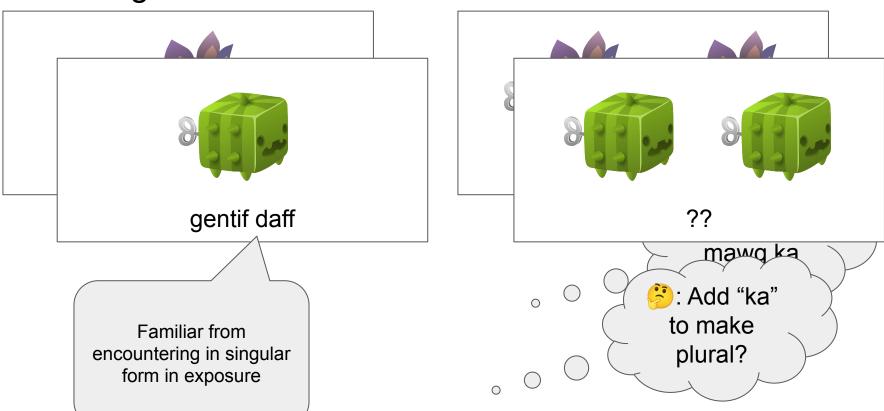

- Background
- Proposal
- Experiments
 - The Hidden Wug Task
 - Experiment 1
 - Experiment 2
- Discussion

Artificial language learning: Hidden Wug task

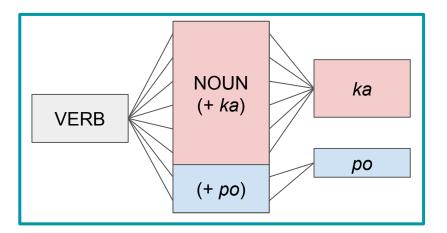


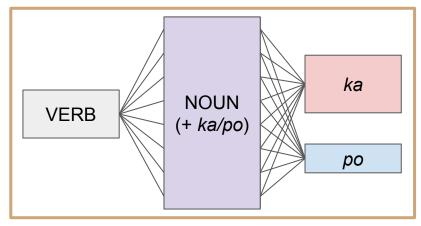
- Precisely control the evidence in the learners' input to support productive processes while capturing features of natural language
- Plural marker task (Schuler, Yang, & Newport, 2016;
 Schumacher & Pierrehumbert, 2021)
- Assess underlying productive generalizations with "hidden" items, which learners have not seen the plural form in exposure, using a wug test (Berko, 1958)

Artificial grammar


Artificial grammar manipulation

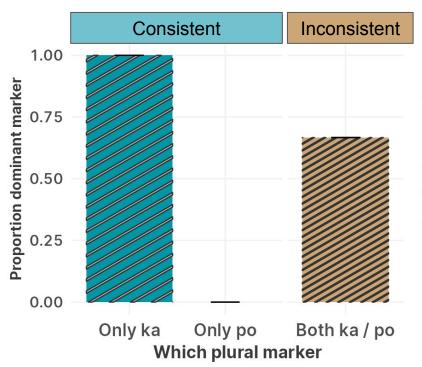
Procedure

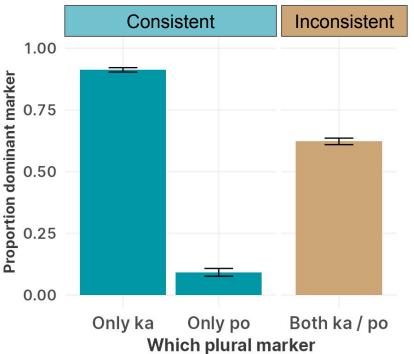

Exposure: 228 learning trials **Test**: 54 wug test trials If the sentence for How do you say this? this image is: gentif zup ka gentif zup


Artificial grammar:

Expt 1: Perfectly consistent

- Consistent language
 - Simplified miniature language resembling English past tense
 - One generalization supported
- Inconsistent language
 - Resembles English particle verbs
 - Two generalizations supported
- Run on Prolific: n = 60 (30 adults in each language condition) after exclusions

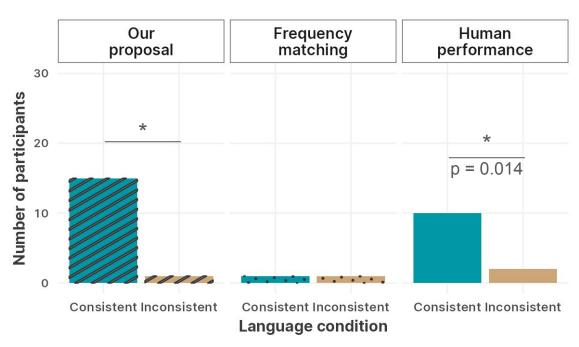



Did participants learn the input?

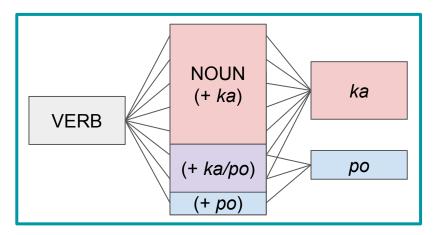
Prediction: Observed distribution

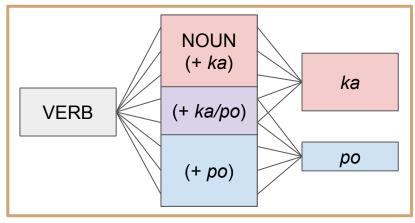
Human Performance

Do participants' generalizations differ?


- Hidden items: Participants saw only the singular form in exposure
- 6 items x 1 opportunity at test
- Measure: exclusive usage of the dominant marker for all hidden items
 - Strict measurement (for adult participants) due to task effects

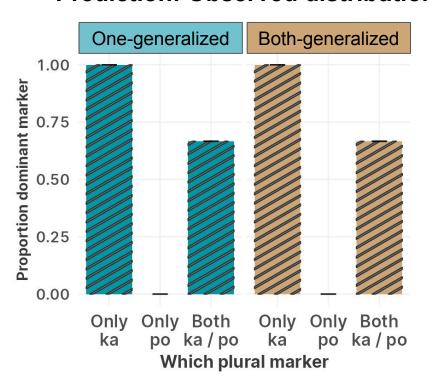
Yes, participants' generalizations differ!

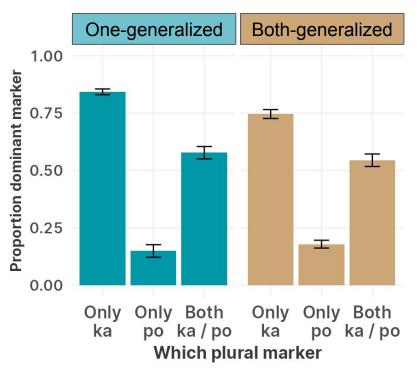

Competing predictions between our proposal and frequency matching


One generalization vs.
 two generalizations

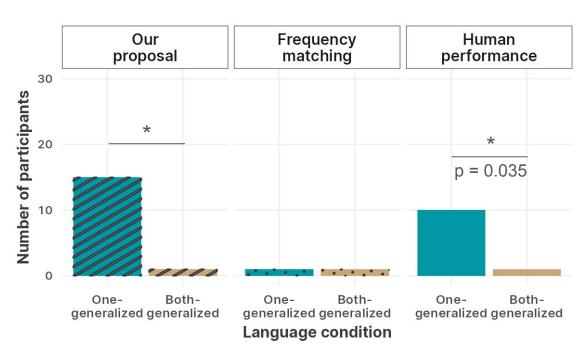
Expt 2: Partially consistent

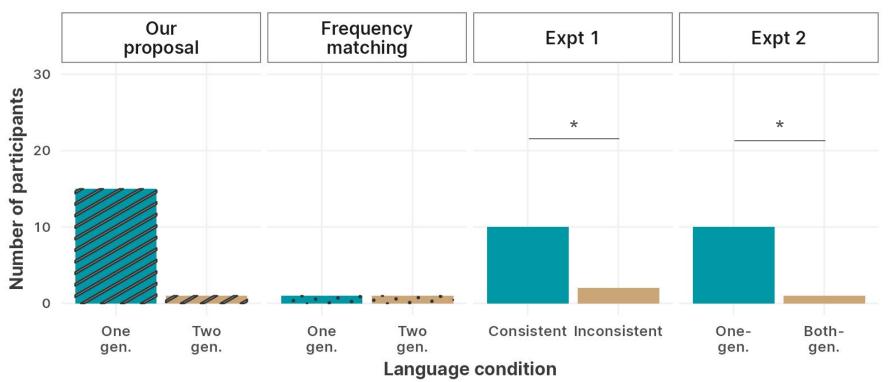
- One-generalized language
 - Simplified miniature language
 English past tense + doublets
 - (5) a. She dreamt
 - b. She dreamed
- Both-generalized language
 - Resembles (-t, -d) deletion
- Not all items eligible for a rule are attested in the input (Yang 2013)
- Run on Prolific: n = 60




Did participants learn the input?

Prediction: Observed distribution


Human Performance


Participants' generalizations differ!

- Hidden items
- Examining exclusive usage of the dominant marker
- Same competing predictions as in Expt 1
- One generalization vs.
 two generalizations

Combined results: Hidden items

Road map

- Background
- Proposal
- Experiments
 - The Hidden Wug Task
 - Experiment 1
 - Experiment 2
- Discussion

Discussion

- Adult learners learn the input veridically across various inputs and can generalize across both consistent and inconsistent patterns in the input
- For productive generalizations, type distributions matter
 - Token distributions held constant across conditions
- Importance of <u>testing generalizations</u> with "hidden" items
 - Methodological innovation to ameliorate some task effects for adults

Future work

- Role of token frequency?
 - How does it impact the learning of forms?
 - How is it incorporated by probabilistic learning mechanisms?
- Developmental differences?
 - Typically, children are said to regularize while adults probability match,
 but on <u>inconsistent variation</u> (e.g. Hudson Kam & Newport 2005; Austin et al 2022)
 - We suspect that token frequency may play a role in explaining this difference

Idiosyncrasy and grammar

- Theoretical implications
 - A key step in understanding idiosyncrasy, grammar, and variation is to uncover the generalizations
 - Implementations should consider this as a first step
- Experiments reveal (and learning models should capture)
 - A striking difference in qualitative behavior (grammars) based on quantitative manipulation of distributions (input)
 - Distinction of exception and variant as a result of a single distributional learning mechanism

Thank you!

Thanks to the Child Language Lab and the Penn Syntax Lab for discussion

Thanks also for our funding sources: National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1845298, University of Pennsylvania

Appendix

Status of optionality: Particle verbs

Corpus work from Gries, 2003 indicates that constraints may affect the probabilistic distributions of various constructions, but there is no deterministic set of constraints

Table 6:6 Distribution of constructions relative to Type

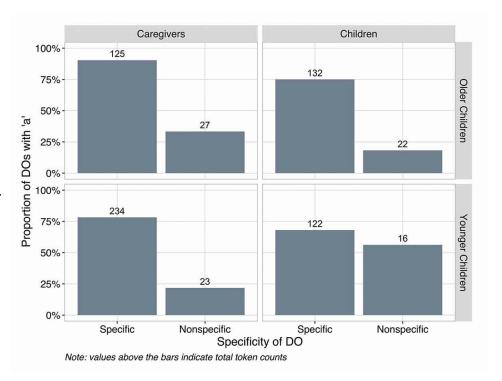
	Pronominal	Semi- pronominal	Lexical	Proper name	Row totals	
Construction ₀	_	3	186	5	194	
Construction,	77	10	115	7	209	
Column totals	77	13	301	12	403	

Table 6:1 Observed distribution of constructions relative to COMPLEX

	Simple ← Bare NPs (0)	Intermediate NP (1)	$\xrightarrow{Complex} Complex NP (2)$	Row totals
Construction ₀	76	102	16	194
Construction,	186	22	1	209
Column totals	262	124	17	403

Table 6:4 Distribution of constructions relative to LengthW⁹

	Short ←								Row
	1	2	3	4	5	6	7	8+	totals
Construction ₀	26	51	35	25	15	10	8	24	194
Construction,	103	81	15	5	2	2	1	-	209
Column totals	129	132	50	30	17	12	9	24	403


Table 6:5 Distribution of constructions relative to LENGTHS

	Short ←							\longrightarrow Long		Row	
	1	2	3	4	5	6	7	8	9	(,)	totals
Construction _o	5	26	26	21	19	14	18	7	7	51	194
Construction	82	51	35	18	8	8	1	2	4	-	209
Column totals	87	77	61	39	27	22	19	9	11	51	403

Status of optionality: Children's acquisition

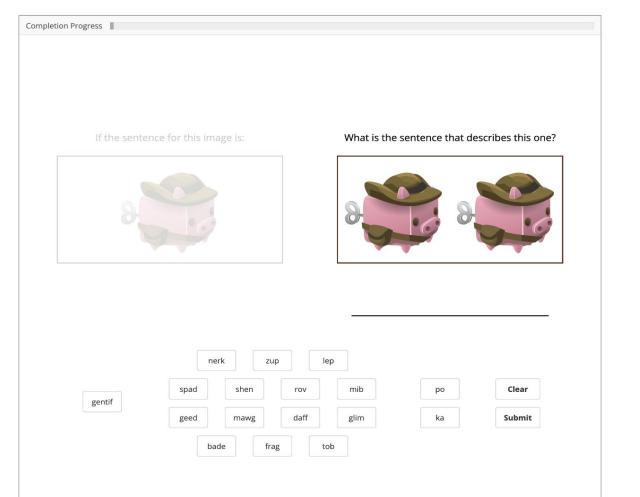
Callen & Miller, 2022 find that while older children (>3;0) demonstrated adult-like knowledge of both animacy and specificity constraints on variable DOM, younger children (≤3;0) only demonstrated adult-like knowledge of animacy constraints

(Figure 5)

Participants and exclusions

Participants

 Self-reported monolingual native English speaking adults with normal vision and hearing, with no known language delays, and a high approval rate (>85%) on Prolific

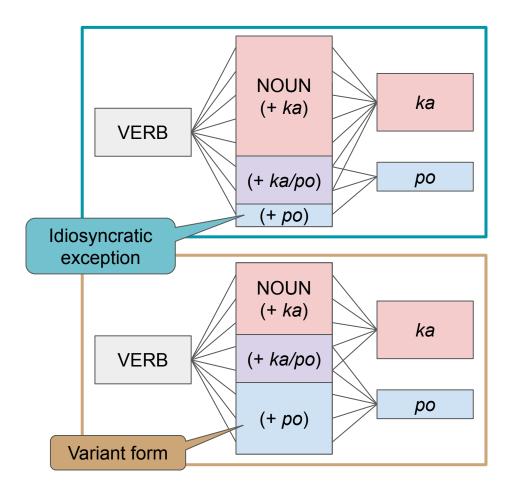

Exclusions

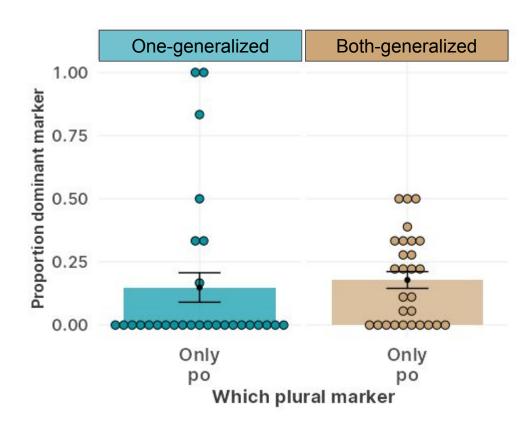
- 1. Self-reported attention below 75%
- 2. Poor noun learning (< 75% accuracy in the last ⅓ of noun learning task)
- 3. Not enough data contributed
 - < 90% productions in test of the form VERB NOUN (PLURAL)</p>

Test: Array

Capturing the stable lexicon

But may contribute more task effects due to having the plural marker options explicitly available


Hidden items


Learning exceptions

Minority-only item(s) are:

- Idiosyncratic exception in the One-generalized condition
- Variant form in the Both-generalized condition

Learning exceptions

- Dots represent individual participants
- Participants treat the minority-only words as po-only words when exceptions than variants (β=1.707, SE = 0.740, p = 0.02)